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Abstract In a contact between a spherical indenter and the plane surface of a brittle solid,
experimental studies show that circular cracks emanate outside the edge of the contact region, not
at the contact edge as expected from the Hertz solution.

In this paper different levels of approximation where friction is accounted for, are compared
with the solution of the fully coupled contact problem. In particular, the maximum tensile principal
stress and its location are computed. The location of the calculated maximum stress is compared
with the radius of the ring crack found in indentation tests. It is shown that an uncoupled analysis
with a stick and a slip zone gives accurate results for most practical material combinations.

The coefficient of friction is experimentally measured by use of a leaning plane. Comparisons
are made with experiments performed on ceramics and glass. which show that the use of the
measured coefficients of friction will predict a smaller crack initiation radius than those found from
experiments. Copyright C 1996 Elsevier Science Ltd

1. INTRODUCTION

In recent years the use of indentation tests on brittle materials has grown in popularity as
a method for the determination of material properties such as Young's modulus, tensile
strength, fracture toughness and of course hardness (Zeng et al., 1992a,b). Several well
known test methods, like Vickers, Rockwell, Knoop, Berkovich (for nano-indentation)
and Brinell are used, A major advantage of indentation tests is the relative ease of how to
perform them, while a drawback is that the indenters inevitably give rise to complex stress
fields, To evaluate these tests the details of the stress distribution of the bodies have to be
known. This is advantageous for the Brinell test since the problem of a sphere indenting a
half-space, at least for linear elastic behaviour, has a closed form solution. The drawback
of the Brinell test. as compared to the other tests is that the solution is not self similar which
complicates the analysis for inelastic material behaviour.

The problem of elastic contact between two solids is usually treated in a way where
the indentation is assumed to take place without influence of friction, allowing for shear
free sliding. The mathematical solution to this problem for a smooth contact was found by
Hertz over hundred years ago and is well known, For this case the maximum principal
tensile stress is the radial stress at the contact perimeter. In brittle materials, discarding
statistical effects, the first cracking should therefore be initiated at this point.

Experiments show, however, that the first crack (circular) usually has a radius 5--40%
larger than the contact radius, It is the author's opinion that this, to a great extent, is due
to the presence of friction which changes the stress distribution and therefore shifts the
location of the largest principal stress. There are, however, other explanations for the
divergence, for example statistical effects from presence of surface flaws, their size distri­
bution. and thus energy release rate (Lawn and Wilshaw, 1975 and Monginot and Maugis,
1985). The flaw size explanation is supported by the fact that polishing the surface, and
thereby removing the flaws, results in a crack radius that is closer to the contact radius
(Chaudri and Phillips, 1990). Polishing will also decrease the coefficient of friction. indi­
cating that the result also supports the hypothesis that friction is of major importance. A
point frequently missed when using statistical models for the largest flaw size is the repetitive
nature of the experimental results. The shape of the ring cracks are. for isotropic materials
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also, indeed very circular. Both these two observations indicate that the crack pattern is
determined by the stress distribution primarily. Also the influence of surface roughness has
been suggested as an explanation (Greenwood and Tripp, 1967). However, brittle materials
like ceramics and glasses usually have smooth surfaces and the contact pressure is high
when cracking occurs. Under such circumstances the influence of surface roughness on the
contact pressure distribution is negligible. A problem with the definition of the contact
radius in this analysis also persists, which complicates the use of this type of analysis. Also
the predicted increase of contact radius has not been observed in experiments.

In Johnson et at. (1973), in a thorough study, different theories for crack initiation are
compared with experiments on glass. Here, it is pointed out that friction qualitatively gives
a correct explanation of the fact that cracks occur outside the contact as well as that cracks
occur during unloading (reverse slip occurs increasing the tensile stress). However, the
approximate calculation of the stress fields does not give quantitative agreement.

The contact problem including friction has been solved by Spence (\ 975) using a
combined analytical and numerical method. It requires the solution of two coupled integral
equations of Fredholm's first kind. This is complicated, and if the stress distribution is
sought, integration of both normal and shear stress distributions has to be performed.
There are also several solutions found by use of FEM or BEM. In these numerical methods
it is quite difficult to capture the large gradients of the solution around the contact edge
even without any frictional forces. In particular, the radial stress at the surface is practically
impossible to calculate accurately. To perform a parameter study with reasonable accuracy
would therefore require massive amounts of computer time.

The influence of friction was widely studied in the sixties and at the beginning of the
seventies (Goodman, 1962, Spence, 1968, 1973, 1975, Noble and Spence 1971 and Johnson
et at., 1973). Contact stresses were computed and compared for different levels of approxi­
mation. It was also shown that the presence of friction radically changes the stress dis­
tribution in the contact region. What has not been performed is a systematic study of the
accuracy of the stress distributions calculated from the uncoupled analysis. This is of
particular interest when the dissimilarity between the bodies is significant.

In this paper a parametric study is performed for the fully coupled problem as well as
for three different types of uncoupled analysis. The change in radial stress is primarily
studied. The contact pressure and shear stress distribution will depend upon the coefficient
of friction J.1 and the level of dissimilarity of stiffness for the contacting materials {3. The
stress distribution will also depend of Poisson's ratio v. In order to find reliable values of
the coefficient of friction, measurements for different material combinations have been
performed. Finally the calculated location of the maximum stress is compared with the
radius of ring cracks found in indentation experiments.

2. SOLCTION TECHNIQUES

Consider a contact between a sphere and a half-space according to Fig. 1. A basic
assumption is that Coulombs law of friction is valid point wise, e.g.

q(.Y) :s; J.1p(x), (I)

where J.1 is the coefficient of friction which is assumed constant. It does not depend either
upon the spatial coordinate x (which will be valid if the surfaces are uniform), or the
pressure p. Experience has shown the latter to be true, at least for a wide range in pressure
magnitude.

Depending on the required accuracy different levels of approximation can be adopted.
The exact solution requires the solution of two coupled integral equations. The solution
has to be found numerically and therefore also stresses are found by numerical integration.
If. on the other hand, the influence of friction on the normal pressure is neglected, the
problem becomes uncoupled. The resulting integral equation can be solved and thereafter
the stresses can be evaluated. The functions involved are quite complicated and some
numerical calculations also have to be performed. A further simplification is to assume that
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either slip or stick occur over the entire contact region. All these cases has been considered
and the results will be compared in the following.

2.1. Coupled analv.I'is
This problem was first solved by Goodman (1962) using an incremental technique.

Later, Spence (1968) used similarity arguments which simplified the analysis. A condensed
version of the analysis in Spence (1975) is given here mainly to show the technique and
incorporate some improvements. Consider an axisymmetric contact problem. In cylindrical
coordinates the stresses and displacements at the surface are written in non-dimensional
form as

where

uJr) = /I..(P)H'(x).

£,,/1..
O'rc(r) = - 2a q(x),

ur(r) = /I..(P)u(x),

(2)

(3)

£"
(4)

x = ria, G is the shear modulus, v is Poisson's ratio, /I.. is the indentation depth and a is the
contact radius. The subscripts I and 2 refer to material (or body) I and 2, respectively. If
the two bodies in contact are considered to be much larger than the contact radius. the
functions p, q, u and H' are connected by the pair of coupled Volterra equations

fl tp(t) dt {II IX q(t) dt }

.
. /2 ]-13 q(t)dt-x /.2 - 2 = }t'(x),
'vt-.\ ° OyX-t

j
r.1 q. (t) dt Jr , tp... (t) dt .x . - fJ. = u(x)
.' ~t2_x2 I) y'X2_t2

where fJ is one of the Dundurs' parameters defined as

(Sa)

(5b)
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_ (1-2V I 1~2Ve) .....!(I-VI I Ve)fJ- -----.. , -+-
2G I 2Ge · G I G e '

(6)

The Volterra equations can be written in terms of a single linear integral operator, with a
matrix structure as

(7)

The simplest way to obtain the solution to the problem of a spherical indenter is to first
solve the problem of a flat punch indenting the half-space and then transform the solution
to the sphere case. For the flat punch the dimensionless normal displacement has the
following form

H'(X) = I. 0,,;; x ,,;; I. (8)

Within the annulus where no relative slip occurs (0 ,,;; x ,,;; c) the following relation holds

u = O. /ip(X) - q(.y) > O.

The corresponding relation in the slip region (c ,,;; x ,,;; I) is

u < O. liP(X) - q(x) = 0,

Thus, eqn (7) becomes

For a spherical indenter of radius R. the dimensionless normal displacement is

For a self similar solution to exist. II' must be independent of a, thus

(9)

(10)

(11)

(12)

(13)

where A is a constant. With the requirement that there should be no relative slip for x ,,;; c
and independence of a, the dimensionless radial displacement must of similarity reasons be
of the form

(14)

where C is a constant. Thus, for the sphere problem, eqn (7) becomes

(15)

The constants A and C have to be determined as part of the solution, with aid of the further
boundary condition that the stresses at the edge of the contact region must vanish, i.e.
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(16)

Since the solution has to be found in an iterative manner, it is more efficient to instead solve
the punch problem and then transform the results to the sphere problem (this can be done
for any indenter of power law type). If the solution found for the punch is denoted with PCh

qo Spence (1968) has shown that the solution for the sphere problem is found as

II po(t)
p(x) = 2x .. -,-dt,

, t~

The constant A is found from the equation

II qo(t)
q(x) = 2x. -,-dt.

, t~

(17)

I 2fl1- "A = - tK(t)p(t) dt,
~ IT 0

(18)

where K(t) is the complete elliptic integral of first kind. If the indentation depth is known,
the physical contact radius is found by use of eqn (13), giving

(19)

where af/ is the contact radius for the frictionless problem (Hertz solution). Through
integration of eqn (2) the relation between the load and the indentation is found as

where

P = 2E,.a!1P*

P* = ~f xp(x) dx.

(20)

(21 )

Thus, in the frictionless case we have P* = I for the punch and p* = 2/3 for the sphere. If
it is the load that is a priori known (instead of the indentation depth), the physical contact
radius is found by combining eqns (13) and (20) as

~
- £--'PR '2

a = 2E,AP* = 3AP,;af/' (22)

2.2. Numerical procedures
For the numerical solution of the integral eqns (11). Po(t) and t~ I qo(t) are approxi~

mated as piecewise constant over N subintervals hi = {t: tl~ I < t < til' spanning the full
interval (0,1). The resulting equations are satisfied at the N midpoints Xi = (ti- 1+ tJ/2. The
slip radius c is chosen as the M th point of subdivision, giving

c = t~f' AI < N. (23)

Since the shear traction in the slip zone can be replaced wiGl the normal pressure times the
coefficient of friction, there will be N + M unknowns such that
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Po (t) = POi' for f E hi' i = (l, N) (24)

i=(I,M)

i=(M+I,N).
(25)

Then an equation system is created by insertion of eqns (24) and (25) into (11) giving a
system of the type

M~.\

I DkIP/ = ek
/~ I

where the elements of D become

(26)

j = (1, M)

Xi
-f3Bi;+f1--A,; .i =(M+ I,N)

XI

(27)

(two minus signs are missing in eqn (2.2) of Spence, 1975) where

{
(f > x,).

(t < x,)
(28)

A ij = 0 for.i < i and B
'I

= 0 for.i > i. The components of the right hand side are

{
I k =(1,1V)

ek= 0 k=(N+I,N+M)'
(29)

In order to validate the accuracy of the numerical procedure, comparisons were made with
two cases with known analytical solutions, namely the frictionless problem (complete slip)
and the adhesive problem (complete stick). With an interval length hi = 0.004 (N = 250)
the method renders very accurate results. Comparison is done with the frictionless solution
where the exact values for the punch are PoCO) = 21n ~ 0.636620 and P(; = I. For the
adhesive case the solution is dependent upon f3 and for the maximum value (f3 = 0.5) the
exact values are PoCO) = 0.807860 and P(; = 1.09861. As can be seen in Table I, the
agreement is excellent. The pressure distribution also follows the exact solution except for
the last two or three points where oscillations occur and the error is quite significant. This
behaviour was also reported in Spence (1975). This behaviour may possibly be removed by
use of some other functional behaviour of the pressure distribution than piecewise constant.
Attempts with a cubic spline distribution used earlier with success (Andersson and Nilsson,
1995) proved worse, giving oscillations over a larger region.

Table I. Accuracy of the numerical method

Punch Sphere
----_ ..---- _ ....- '---'--'-, ",.-- .----------------

Error Error Error Error
j.j,/3 PolO) (%0) p* (%) p(O) (%0) p* (0/00) a

----_..,-------- ---•...._----- --_...._--_.- _._._------ .._----

o. /3 0.63661 0.02 0.99998 002 1.27322 0.01 0.66666 0.01 1.00002
x,O.1 0.64196 0.02 1.00333 0.02 1.28394 0.01 0.66889 0.02 0.99861
x.0.3 0.68858 0.06 1.03168 0.05 1.37717 0.07 0.68779 0.05 0.98672
x,0.5 0.80779 0.25 1.09846 0.14 1.61561 0.26 0.73231 0.13 0.95866
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The pressure and shear traction distributions for the sphere were then calculated
according to eqn (17). Using the piecewise constant punch pressure POi the pressure for the
sphere becomes

For the shear traction the corresponding expression is

_j2x'l.f pOi- N r t 1 dt+ 11 f POi r (2 dt] i = (I, M)
Pi+N - J=i Jh i i=i Jh i

IlP, i = (M + I, N)

(30)

(31)

These integrals were integrated exactly. This is not in accordance with Spence (1975), who
performed a quadratic fit on each interval of the flat punch values at the three nearest mid­
points before performing the integration. This method was also examined here but proved
to be less accurate. After the transformation the same comparison was made as for the
punch solution. The solutions are related through eqn (17), which for x = 0 gives
p(O) = 2po(0) and p* = 2P~j3. As can be seen in Table I the sphere solution is equally
accurate and no additional errors are introduced through the transformation. The oscil­
lations present in the punch solution disappear, and the sphere pressure distribution
smoothly approaches zero at the contact radius.

The constant A also has to be calculated (the constant C is not used) in order to
determine the actual contact radius. In Spence (1975) this is done by insertion of the sphere
solution into the discrete version of eqn (15) and then applying a least square fit. Here A is
instead calculated directly from eqn (18), again using the piecewise constant punch pressure
distribution. This method proved to be both easier and more accurate. The resulting contact
radius is also shown in Table I.

2.3. Calculation of stresses
Begin with inferring a similar scaling as for the stresses in the contact zone, viz

(32)

Since comparison will be made with the frictionless solution, the contact radius according
to the Hertz solution aH has been used instead of a. This means, that if the indentation
depth is controlled, when calculating the dimensionless stresses in the bodies are produced

by a contact pressure of magnitude flp(x) ,'!nd a shear stress distribution flq(x). If
instead, the load is controlled, the factor J A multiplying the contact stresses will be
replaced by j3AP*j2. The dimensionless coordinates

r x
p = .~ = -----;=

aH \/A
(33)

are also introduced. There exists several techniques to calculate the stress distribution from
surface tractions acting over a disc shaped region. Most of the methods have been developed
for analytical applications. In order to avoid numerical evaluation of double (or triple)
integrals, an alternative method will be used. The method is based on the radial displacement
due to an axisymmetric distribution of normal and shear tractions, as given by Noble and
Spence (1971).
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G 1-2v fr fa
1 _ Vur(r) = - 2(1--=-v)r 0 spes) ds + 0 k 2 (1'/s)q(s) ds

l
2S [K(r/s) - E(r/s)], I' < s
nr

k 2 (r/s) =
2
- [K(s;r) -E(s/r)]. I' > s
n

(34)

(35)

By use of Hooke's law and the definition of strain for axisymmetric deformation, the non­
dimensional radial stress is found as

(1 - 2v) fA f' r- 4fA fX [('1) ('12

) (I7)J(jrr = .2 " IJp(lJ) dlJ-~ Ap(x) +~ q(lJ) vK - - 22 +v E --= dlJ
:x 0 nx 0 x x -'1 x

4~A II [( '1
2

) (X) (X)J+--;- .. lJq(lJ) ~-o-----.;-vE--(1-v)K- dlJ, x<1
n:c, '1' - .:c '1 '1 (36)

-. 2(1-2v)".fAp* 4v!Afl[( .'1 2

) ('1) (I7)Jd(J . = - -- q(lJ) -- + v E - + vK - '1
", " 2 'nx· nx 0 X' -'1 x x

x ~ 1.

(37)

If the piecewise constant punch pressure distribution is used in connection with the trans­
formation integral, egn (30), the pressure part of egn (36) can be integrated exactly. This
method, however, proved to be inaccurate since the oscillations in the punch pressure values
near the contact edge rather strongly affected the stress distribution. Therefore, a piecewise
constant sphere pressure distribution was used. Inserting this into egn (36), the pressure
part becomes

where

(1-2v) !Af' ! !A[(1-2V)D J
x

2
v 0 IJp(lJ)dlJ-V Ap(x) =~2 -~-(1+2v)Pk

k-I

D = -PktLI + L p;(t}-t1-1)
i~ I

(38)

(39)

and k is such that tk - I ~ x ~ tk • Again the comparison with the frictionless solution showed
excellent agreement. For v = 0.25 the error was only 0.04%0 both at the centre of the contact
and at the contact edge. Outside the contact the error in the stress distribution will be the
same as the error in P*. The contribution from the shear stress was integrated numerically
using a piecewise constant distribution. The shear part of egn (36) proved to be difficult to
integrate numerically. For this reason the method ofGreen and Collins, described in Barber
(1982) is used. The shear stress contribution to the radial stress within the contact disc is
according to Hills and Sackfield (1987) (the same expression is obtained by use of the
method described in Noble and Spence, 1971)

(40)

where
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(41)

2.4. Uncoupled analyses
If the influence of the shear tractions on the normal displacement is neglected, the so­

called Goodman approximation is valid for small [3. Then, the contact radius and normal
pressure will be given by Hertz frictionless solution. This is a widely used approximation
that gives the opportunity to find closed form solutions for the stress distribution in the
entire half-space (Lundberg and Sjovall, 1958). The scaling introduced above gives the
radial stress (see for example Johnson, 1985) at the surface due to the Hertz normal pressure
(the frictionless case), as

(42)

The total stress is then found as the sum of the stresses induced by the normal pressure
(eqn (42)) and the friction induced stresses given below.

2.4.1. Partial slip. Spence has in a series of articles (1968, 1973 and 1975) treated the
problem of partial slip. Primarily for a flat ended punch, but by use of the transformation
according to eqn (17), the dimensionless shear traction for the spherical indenter is shown
by Hills and Sackfield (1987) to be

4,u [ /~7 Ie l/J(t, c) ]q(p) =- vl-p~-pH(c-p) ~dt ,
1t r t2J 1- t2

O<p<1. (43)

Here H is the Heaviside step function and c the dimensionless radius of the stick zone. The
function l/J is defined as

2 [ in2
de cK(c') {w Qo(W)}]l/J(p, c) =- wp --- ~--- ,

1t a (I-(l- p2)sin2e)Jl-c'2 sin 2 e p c Qo(c)

o:( p :( c,

l/J(p, c) = 0, c:( p :( L

where

I (I+X)Qo(x) = 21n I-x'

(44)

(45)

To evaluate these expressions the radius of the stick zone c has to be known. A natural
choice made by Hills and Sackfield is to use the relation derived in Spence (1975)
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p Qo(c)

{3 cK(c')
(46)

which is valid for {3 « I. This also makes it possible to normalize the stresses with respect
to {3 or p.

In Hills and Sackfield (1987) a closed form solution of the stresses for this shear
traction distribution is presented, in which use of the method of Green and Collins (see
Barber, 1983 and Green and Zerna, 1968) is made. The shear part of the dimensionless
radial stress is given by

2(1-v) 2 dl
air = p2 1- Pdp . (47)

Since it is the maximum stress which occurs outside of the contact that is of primary interest,
only the expressions for this region are given here. Unfortunately, the expressions given for
I in Hi1ls and Sackfield (1987) and Hi1ls et al. (1993) are not correct. Here, instead the
fo1lowing expression has been obtained by use of the same technique. Outside the contact
region (p ~ 1)

8/3 [ {3 > >} 3 { > C }1=-0 M 2p -2p·v-c·v +- p·arcsin--cv
37[- 4 p

(48)

and from Hi1ls and Sackfield (1987) or Hi1ls et al. (1993)

dl 8 [{ ( > p3 ) c Qo(c) (p > 0 )~=- {3 M 2p.---vp ------ -(3-c-2p·)-4pv
dp 7[2 V 3pv 6 v

pc (Cq) c
q2

} {c 11
K(t') - 2E( t') }]--6 -qpQo - --3- +J1P -{K(c')-E(c')}+. ' dt

v v pv v , .J p2 _ [2

where

[
I +C2 E(C')] Qo(c) I

M= ----- ----
2 K(c') c2 2c'

q2 =p2_1,

(49)

(50)

2.4.2. Complete stick. If it is further assumed that the contact is adhesive, the resulting
integral equation can be simplified. Goodman (1962) gives the resulting shear stress as

_8{3prvl - p' Inx d
q(p) - 7[2 Jo (l_x2)2 X. (51)

This solution is not physical since near the contact edge, the shear stress wi1l be larger than
the normal pressure times the coefficient of friction. Although it is impossible to express
the shear stress in closed form, this is possible for the surface stresses. The dimensionless
radial stress due to the shear force becomes according to Hi1ls e[ al. (1993)
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(52)

8/3 [1- v I q pJ(j'f, = -, -,-arctan- -(2+v)(q-p)- -[I-V+p2(2+v)] In-, p ~ 1.
3n- p~ q p2 q

(53)

2.4.3. Complete slip. If, instead, complete slip is assumed, no integral equation has to
be formulated. The shear traction must be according to eqn (I)

q(p) = JlP(p)· (54)

The radial stress can then be found by the methods applied above for the coupled problem.
Johnson etal. (1973) gives the radial stress as

p~1. (55)

The expressions above all make it possible to calculate the resulting stress distribution for
an uncoupled problem by evaluating closed form expressions. The accuracy of the different
methods will be discussed below.

3. INITIATION OF CONE CRACKS

The first visible damage arising during an indentation test in brittle materials (ceramics,
glass etc.) is a ring crack emanating outside the contact perimeter normal to the surface.
The radius of the crack is usually 5-40% larger than the contact radius. Upon further
increase in load, this ring crack grows into the material at an inclined angle, away from the
contact, and the familiar cone crack is formed. Later also radial cracks and crushing zones
may develop (see Cook and Pharr, 1990 for discussion of crack types).

A fundamental assumption for the initiation of ring cracks is that the magnitude of
the maximum principal stress is the governing parameter. For the frictionless contact and
spherical indenters it is well known that the radial stress at the contact perimeter is the
largest stress component. This implies that the stress distribution must differ from Hertz
solution. In the presence of friction the distribution will change and therefore the location
and magnitude of the largest principal stress will also change. For small values of the
coefficient offriction the change in stress distribution will be small and concentrated around
the contact region. The radial stress at the surface will still be the largest principal stress,
the maximum will however be shifted outwards. The methods described above are utilized
to calculate the resulting radial stress at the surface of the bodies for a given value of the
coefficient of friction. The location of the maximum tensile principal stress is then taken as
the point where the crack will be initiated.

4. MEASUREMENT OF THE COEFFICIENT OF FRICTION

The former analysis shows that the presence of friction is, at least qualitatively, the
explanation for crack initiation outside the contact radius. For quantitative comparisons
between the calculations and the experimental results the coefficient of friction also has to
be experimentally measured. If the measured and the calculated coefficients of friction are
equal, then it implies that friction is the cause of the observed crack radius increase.

The indenter materials were only available in the form of spheres (diameter 3 mm). In
order to use these for the friction measurements, small steel blocks were manufactured (see
Fig. 2). Three holes were drilled in to which the spheres were glued. The arrangement used
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Fig. 2. Steel block used for measurement of the coefficient of friction.

for the experiments was a leaning plane. The leaning angle, iX, of the plane was slowly
increased until the entire steel block began to slide. This test method gives the static
coefficient of friction. When solving the contact problem it is not fully clear if it is the static
or the dynamic (sliding) coefficient of friction that should be used. The static coefficient
determines when slip begins between the bodies but it will be another coefficient of friction
that determines when the sliding will end (when the sliding velocity approaches zero).
During the experiments it was observed that when the steel blocks had begun to slide they
often continued with approximately constant velocity. Thus, the difference between the
static and the dynamic coefficient of friction seems to be small for the material combinations
under consideration.

From static equilibrium considerations of the steel block on the leaning plane, the
coefficient of friction is obtained as

/l = tan iX, (56)

where iX is the leaning angie for which sliding begin.
The tests were performed using two different materials for the spheres (steel and WC)

and several different ceramics and one glass. Both types of spheres are intended to be used
as ball bearings and they are well polished. Approximate material properties are shown in
Table 2 and the resulting coefficients of friction in Table 3. The values presented in Table
3 are the mean values from five tests. The scatter was for most material combinations
around 5%. For the glass, however, the scatter was about 25%, which probably is due to
small scratches on the surface of the samples. It was somewhat surprising that the coefficients

Table 2. Material properties

No.

I
2
3
4
5
6
7
8
9

10
II
12
13

Material

Al,O, + 8%ZrO,(SHM)
AIP,(SHM)

Al,O, + 8%ZrO,(/FO)
AI,O,(MM)

AI,o,+ 15%ZrOlIBD-Rami)
AI,03 +4%SiO,(IFO)

SiC (Cercom)
TiB, (Cercom)

Sialon 2 (SHM)
Soda-lime glass

AI,o, + 25%SiCw

SS 142258 (Steel)
WC+8%Co

E/GPa

380
380
380
380
380
380
455
556
400

69
330
205
614

0.24
0.24
0.24
0.24
0.24
0.24
0.17
0.20
0.20
0.25
0.22
0.30
0.22
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Table 3. Coefficients of friction
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---_.---------- -------

Steel spheres WC spheres
_._--~_._._--------- -----_ ..

Material E, E,
no. GPa f! jl GPa f3 jl

--_.-_.-_.-.'--.__ .

I 144.5 -0.061 0.320±0.017 248.1 0.072 0.150±0.008
2 144.5 -0.061 0.285±0.011 248.1 0.072 0.151 ±0.004
3 144.5 -0.061 0.380±0.024 248.1 0.072 0.275±0.029
4 144.5 -0.061 0.387±0.014 248.1 0.072 0.217±0.005
5 144.5 -0.061 0.418±0.006 248.1 0.072 0.25HO.017
6 144.5 -0.061 0.445 ± 0.006 248.1 0.072 0.264±0.010
7 152.1 -0.064 0.289 ± 0.032 271.4 0.079 0.215±0.007
8 162.2 -0.10\ 0.225±0013 305.2 0.028 0.171 ±0.007
9 146.2 -0.054 0.426±0.014 253.2 0.087 0.230 ± 0.005

10 55.5 0.181 0.207 ± 0.054 66.1 0.262 0.130±0.009
----_.~._----,_.,---

of friction for the steel and WC spheres differed as much as Table 3 shows (often a factor
2). It is not possible to distinguish the two different spheres by visual inspection. The
different values of {t for materials 1-6, which were all alumina based ceramics, indicate that
it is not possible to obtain the coefficient of friction only from knowledge of which two
materials are used. Materials 3, 6 and 9 had a rough surface, with clearly visible scratches
from manufacturing, while all other materials had a smooth surface.

5. RESCLTS

The results are here divided into three parts. First a parameter study is performed to
clarify influence of the three parameters on the solution. Secondly the accuracy of the
simpler uncoupled methods is examined. Finally, the calculated location of maximum
tensile principal stress is compared with the radius of ring cracks found in experiments.

5.1. Parametric studies
As was found from the analysis in Section 2, the contact stress distribution will depend

upon the difference in stiffness 13 and the coefficient of friction {to It is often convenient to
represent the solution as function of the slip radius. In Fig. 3 the relation between slip
radius and the ratio I-l/I3 is shown. Since the dependence on 13 is not very strong, only four
different values have been used. As can be seen, eqn (46) is accurate even for 13 = 0.2, while
for large values the difference becomes significant. In Fig. 4, the dimensionless load is
shown. As is well known, friction hardly influences the load-displacement relation. The
maximum increase is about 10%, but from Fig. 5 it is seen that the contact radius for the
same case has decreased with 4%, which means that the increase of the physical load will
be only about 5%. Thus, in practical indentation testing it is not possible to detect friction
effects by monitoring the load and certainly not the contact radius.

The following figures concerns the change in stress distribution due to friction and in
particular the location and magnitude of the maximum principal stress. For the stiffer body,
the location of the maximum remains at the contact edge and as can be seen in Fig. 6, the
magnitude increases. The amount of increase is a strong function of both 13 and c (or I-l),
the stress distribution is also dependent upon Poisson's ratio V. Comparison of Figs 6a and
b shows that an increase of v from 0.15 to 0.35 approximately doubles the maximum stress
for a given value of 13. But since an increase of v in the stiffer body also increases 13 the effect
of varying Poisson's ratio will be even stronger. An interesting feature is that the solution
for high values of c does not monotonically approach the value for complete stick (c = I).
The reason for this is that the complete stick solution is fundamentally different having
q(p) > I-lp(p) near the contact edge. This, of course, affects the stress at the contact edge.
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fl./ fJ
Fig. 3. Slip radius as function of f1;fJ.

For the softer body it is seen in Figs 7a and b that the magnitude of the maximum
principal stress is instead decreasing with c, contrary to the results of the stiffer body. The
variation of stress with the three parameters is as strong as for the stiffer body. There are,
however, two differences. For the softer body an increase of v will instead decrease the
value of 13 and therefore the influence of v will be less than that indicated by comparing Figs
7a and b. For the softer body the solution for high values of c monotonically approaches the
complete stick value. This is because the maximum will occur outside the contact edge and
therefore the exact distribution of the contact stresses will not be important. For both
bodies the solution varies rapidly for small values of c. The implication of this is that even
with a small coefficient of friction, Hertz solution gives a poor estimate of the maximum
principal stress.

For the softer body the location of the maximum stress also changes. This is interesting
for prediction of crack initiation. The dependence of the location on 13, c and v is shown in
Figs 8a and b. Also for the location the dependence of all three variables is strong.

It is theoretically possible to change the magnitude of the maximum principal stress
by a factor 10 (up or down) as well as moving the location of the maximum on the softer
body to a radius of 2.5 times the contact radius. Thus, to analyse the stress distribution for
an indentation test it is necessary to have accurate values of the constitutive parameters of
both bodies as well as the coefficient of friction.

5.2. Comparison of the different levels ofapproximation
When comparing the coupled and the uncoupled analyses it is necessary to specify

whether it is the indentation or the load that is given. For the case where the load and
contact radius have the largest deviation from the Hertz solution (which is 13 = 0.5 and
c = 1). A ~ 1.088 and p* ~ 0.7323 giving the ratio between the scalings as

(57)

It then follows that the dimensionless stresses for the coupled problem would be 1.7% less
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.......... ~ = 0.35
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Fig. 4. Influence of friction on the dimensionless load.
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Fig. 5. Influence of friction on the contact radius.

than shown in the figures if the load instead was the controlled parameter. A corresponding
shift in location of the stress point will occur according to the scaling introduced in eqn
(33). This means that the difference between the sealings can be neglected with a good
accuracy, which also holds for the prediction of the crack radius performed below. This
means that the well known, closed form relations between load, indentation depth and
contact radius known as Hertz solution can be used with very good accuracy except for
extreme cases.
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Fig. 6. (a) Ratio between maximum radial stress, with and without the influence of friction. The
stiffer body (v = 0.15). (b) Ratio between maximum radial stress, with and without the influence of

friction. The stiffer body (I' = 0.35).

As pointed out earlier the use of an uncoupled analysis also simplifies the calculation
of the stress distribution. Therefore it is of interest to examine the accuracy of these
methods. Since it is the contact stress that will differ, it is only the variation of 13 and f.I. that
is of interest. Calculations with different values of v have been performed, but since the
difference between the methods does not change notably, only results for v = 0.35 are
shown here. The methods are compared for different values of 13. Since the complete stick
solution is independent of f.I. they are shown as horizontal lines. For high values of the
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Fig. 7. (a) Ratio between maximum radial stress. with and without the influence of friction. The
softer body (r = 0.15). (b) Ratio between maximum radial stress, with and without the influence of

friction. The softer body (v = 0.35).

coefficient of friction the stick-slip solution approaches the complete stick solution. In Fig.
9, the maximum stress on the stiffer body is shown. The uncoupled stick-slip solution is
very accurate. It is only for f3 = 0.5 and f3 = 0.35 at high values of the coefficient of friction
that significant deviations occur. The complete stick solution is an upper bound for the
uncoupled problem, but as can be seen especially for the higher values of f3 the stresses can
be higher. For small values of f3 the complete stick solution is accurate for 1l/f3 > 2 which
is of practical importance since 11 ~ 0.2 is a common value. The complete slip solution
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Fig. 8. (a) Location of the maximum radial stress on the softer body (v = 0.15). (b) Location of the
maximum radial stress on the softer body (v = 0.35).

instead requires a low value of the coefficient of friction. Again for small values of {3, this
method is accurate if 11/{3 < 1. Since both the complete slip and the stick-slip solution
require numerical solution of integrals, the gain in using the complete slip solution is not
worth the loss of accuracy.

In Fig. 10, the maximum stress on the softer body is shown and in Fig. 11 its location.
The conclusions about the accuracy will be the same as for the stiffer body. The difference
is that here the stresses are compared some distance away from the contact edge, which
results in an even better agreement between the coupled and the uncoupled analysis.
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friction for different levels of approximation. The stiffer body (v = 0.35).

1.0

0.8

0.6

0.4

0.2

'? '" Coupled, Complete stick
...... Coupled, ~ '" 0.05

--- Coupled, ~ '" 0.20
.......... Coupled, ~ '" 0.35
.-...-... Coupled, ~ '" 0.50

~-----~- -~- ~~ -~-~- ---'i'
G--E:i Uncoupled, ~ = 0.05
~ Uncoupled, ~ = 0.20
~ Uncoupled, ~ = 0.35
~ Uncoupled, ~ = 0.50
- Uncoupled, Complete slip
+ .-+ Uncoupled, Complete stick

0.0
0.0 0.2 0.4 0.6 0.8 1.0
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Fig. 11. Comparison of location of the maximum radial stress for different levels of approximation
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5.3. Comparison with experimental results
In order to get a discriminating case for the solution method as well as for the

assumptions made, some calculations were performed and compared with experiments.
Results from Persson et al. (1992) were used, where steel spheres were indented into thick
soda-lime glass plates (material no. 10 and 12 in Table 2). The ring cracks observed were
approximately 29% larger than the theoretical contact radius. By applying a very thin layer
of Au-Pd to the glass, the actual contact radius could be measured after removal of the
load. It was shown that the theoretical and the actual contact radius were in excellent
agreement, even for indentations giving a contact radius that was 30% of the sphere radius.
In Fig. l2a, the contact shear stress distribution has been calculated for {I = 0.207 which
was the mean value for coefficient of friction obtained in the measurements. This gives
{II f3 = 1.14 and, as can be seen, the uncoupled stick-slip and complete slip solutions are
fairly accurate in the entire contact, while the complete slip solution, due to the large slip
radius for this case, differs quite significantly except near the contact edge. Here also the
pressure distribution from the coupled analysis multiplied with the coefficient of friction
has been included. By comparing this curve with the complete slip curve it is seen that the
contact pressure will be slightly underestimated in the centre of the contact and over­
estimated at the contact edge if the Hertz solution is utilized. In Fig. 12b, the corresponding
distributions of radial stress are shown. The maximum stress will occur at a radius 16.6%
larger than the contact radius predicted by Hertz solution. It is also seen that the uncoupled
stick-slip solution is quite accurate and also the complete stick solution gives a fair agree­
ment. The complete slip solution does not give good results in this case. Since the crack
radius is underestimated a new calculation was performed with {I = 0.261 (addition of the
standard deviation) which is shown in Fig. 12c. Increasing the coefficient of friction increases
the slip radius and therefore the complete stick solution will be more accurate for this case.
But since the slip radius already was large in the previous calculation the coupled and the
stick-slip solutions do not change much. The location of the maximum moves to a radius
18.2% larger than the contact radius. The complete slip solution will deviate even more
and in this case it would predict a crack radius larger than the ones found in the experiments.
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Fig. 12. (a) Contact shear stress calculated with different levels of approximation. Steel sphere
indented into a glass block. Ii = 0.207. (b) Radial stress distribution calculated with different levels
of approximation. Steel sphere indented into a glass block. J1 = 0.207. (c) Radial stress distribution
calculated with different levels of approximation. Steel sphere indented into a glass block, J1 = 0.261.
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A similar comparison was made with experiments performed in Zeng et al. (I 992a).
Here alumina with 25% silicon carbide whiskers was indented by a wolfram carbide sphere.
The material parameters are not reported, but in Zeng et al. (l992b) the Young's modulus
has been found by indentation tests to be 330 GPa, which is somewhat low but will be used
in the analysis. The Poisson's ratio of the composite is calculated according to the serial
rule ofmixture. The concentration of Alz0 3 and SiC gives v = 0.22, which seems reasonable.
Taking the elastic constants for the wolfram carbide from Table 2 gives the difference in
stiffness f3 = 0.108.

This material was not available for measurement of the coefficient of friction. Looking
at the different types of alumina in Table 3 show a quite large spread. Here /l = 0.25 was
chosen, which may be a bit on the high side. Results from the calculations are shown in
Fig. 13. In this case /l1f3 = 2.31 and therefore almost complete stick will occur. This results
in an excellent agreement between all solutions except the complete slip. In Zeng et al.
(l992a) the crack radius is reported to be 1.195 ±0.041 times the contact radius. The
calculated location of maximum principal stress is only 8.7% larger than the contact radius.
Since complete stick already almost persists, an increase of the coefficient of friction will
not change this result much.

6. CONCLUSIONS

Experimental studies have shown that ring cracks are formed during indentation of a
sphere into a plate. If the plate material is brittle, the crack initiates at a location outside
the contact region. The results of this paper show that friction between the two bodies plays
a significant role in determining the location of the maximum principal tensile stress. It was
also shown that the difference in stiffness between the bodies in contact, the coefficient of
friction and the Poisson's ratio all three strongly influence the stress distribution in the
surroundings of the contact. Furthermore, it was shown that an uncoupled analysis with a
stick and a slip region will be sufficient for calculation of the radial stress distribution,
except for values of f3 close to 0.5. In cases with low values of f3 and at least two times
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Fig. 13. Contact shear stress (hollow symbols) and radial stress distribution (filled symbols) cal­
culated with different levels of approximation. Wolfram Carbide sphere indented into a whisker

reinforced alumina block. jJ. = 0.261.

higher value of the coefficient of friction, the closed form expression for the stress obtained
from an uncoupled complete stick analysis can be used with good accuracy.

Since even a fairly small coefficients of friction produce large deviations from the Hertz
solution it is not possible to neglect this effect if the stress distribution in the contact region
is of interest. Due to the high pressure levels and quasi static conditions it will not be
possible to significantly reduce the coefficient of friction by use of lubricants. The only way
to avoid friction effects will be to use materials with the same elastic constants. This fact
makes it doubtful to use indentation test for determination of material properties like the
tensile strength. Using this method for fracture toughness testing will also give results
that are affected by friction, especially for short ring cracks. For plastic properties, the
circumstances are more favourable since the effective stress has its maximum below the
surface (approximately half the contact radius). The friction induced stresses are self­
equilibrating and hence the influence on stress distribution will decrease rapidly with
increasing distance from the contact surface. However, if the difference in stiffness is large
or if the plastic zone reaches the surface of the body, the effect of friction must be checked
even for plasticity measurements.

Regarding frictional effects as an explanation for where cracks will occur, the con­
clusion is that friction gives a qualitative, but not a quantitative correct explanation. Since
the contact pressure is very high when the crack initiates it is possible that Coulomb's law
offriction no longer is valid. However in Johnson et al. (1973) the coefficient offriction is
measured through torsion of a sphere under high axial load and since the conclusions from
this work is the same as here, Coulomb's law should be valid. It is likely that a statistical
distribution of strength also has to be considered, which has been done in for example Oh
and Finnie (1967) and Hamilton and Rawson (1970). There however, the Hertz stress
distribution without friction was used which will result in an strong overestimation of the
spread in strength required to obtain an expected crack radius which agrees with the
experimental findings. The three main conclusions drawn, can be summarized as

-the stress distribution in the contact area strongly depends on J.1, f3 and v;
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-except for high values of fJ, the uncoupled analysis with a stick and a slip region gives
accurate results;

-friction gives a qualitative, but not quantitative correct explanation for the phenomena
that ring cracks develops outside the contact zone.
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